Developers
For Developers
Build OSSA-compliant agents using your preferred framework and deploy anywhere.
Quick Start
1. Install OSSA CLI
npm install -g @bluefly/openstandardagents
2. Generate Your First Agent
ossa generate chat --name "My Agent" --output agent.ossa.yaml
3. Validate
ossa validate agent.ossa.yaml
4. Deploy
Use your preferred deployment method - OSSA doesn't care!
Development Workflow
Build with Your Framework
OSSA is framework-agnostic. Build agents with:
- LangChain - Python-based agent framework
- Anthropic SDK - TypeScript/Python SDK
- Custom Code - Your own implementation
- Any Framework - OSSA works with all
Validate with OSSA
Once built, validate against OSSA:
ossa validate my-agent.ossa.yaml
Deploy Anywhere
Deploy to:
- Kubernetes
- Docker
- Serverless (AWS Lambda, Google Cloud Functions)
- On-premise
- Your infrastructure
Migration from Existing Frameworks
LangChain → OSSA
See: Migration Guide: LangChain
Anthropic SDK → OSSA
OSSA supports Anthropic's Model Context Protocol (MCP) natively. See the MCP Integration Guide for details on using Claude with OSSA agents.
Custom Framework → OSSA
- Map your agent structure to OSSA format
- Define tools/capabilities
- Configure LLM settings
- Add observability
- Validate
API Reference
CLI Commands
# Validate agent ossa validate <path> [--schema <version>] [--verbose] # Generate agent ossa generate <type> [--name <name>] [--output <file>] # Migrate agent ossa migrate <source> [--target-version <version>]
Programmatic API
import { ValidationService } from '@bluefly/open-standards-scalable-agents/validation'; import { GenerationService } from '@bluefly/open-standards-scalable-agents/generation'; // Validate const validationService = new ValidationService(); const result = await validationService.validate(manifest, '0.3.0'); // Generate const generationService = new GenerationService(); const manifest = await generationService.generate(template);
Best Practices
1. Use Descriptive Names
metadata: name: customer-support-agent # Good # name: agent1 # Bad
2. Add Comprehensive Descriptions
metadata: description: | Customer support agent that handles: - Product inquiries - Order status - Returns and refunds
3. Configure Constraints
constraints: cost: maxTokensPerDay: 100000 maxCostPerDay: 10.00 performance: maxLatencySeconds: 5.0
4. Enable Observability
observability: tracing: enabled: true metrics: enabled: true logging: level: info
Common Patterns
Pattern 1: Simple Chat Agent
spec: role: You are a helpful assistant llm: provider: openai model: gpt-3.5-turbo tools: []
Pattern 2: Agent with Tools
spec: role: You are a research assistant llm: provider: openai model: gpt-4 tools: - type: http name: web_search endpoint: https://api.search.com/search
Pattern 3: Multi-Agent Orchestration
See: Integration Patterns
Testing
Validate Before Deployment
ossa validate agent.ossa.yaml --verbose
Test with Examples
# Validate all examples npm run validate:examples
Troubleshooting
Validation Errors
# Get detailed error messages ossa validate agent.ossa.yaml --verbose
Common Issues
- Missing required fields: Check schema reference
- Invalid tool types: Use supported types (http, function, mcp, etc.)
- LLM provider not supported: Check provider enum values