Introducing the OSSA Framework: 3-Tier Progressive Compliance
In our previous post, we explored why AI agents need a vendor-neutral standard. Today, we're unveiling the OSSA framework architecture and its game-changing approach to adoption.
The Challenge of Enterprise Adoption
Every new standard faces a chicken-and-egg problem:
- Too simple? Enterprises won't trust it for production
- Too complex? Teams won't adopt it
OSSA solves this with progressive compliance: start simple, add governance when ready, unlock advanced features when needed.
The 3-Tier Model
Core Tier: Get Started Fast
The Core tier provides basic agent discovery and invocation—everything you need to prove value quickly:
apiVersion: oaas/standard kind: Agent metadata: name: code-analyzer tier: core spec: capabilities: - code-analysis - security-scanning endpoints: - url: https://api.example.com/analyze protocol: rest
Core Capabilities:
- ✅ Agent registration and discovery
- ✅ Basic capability declaration
- ✅ Simple request-response patterns
Perfect for: Proof of concepts, small teams, initial experiments
Governed Tier: Enterprise Ready
When you're ready for production, the Governed tier adds enterprise controls:
apiVersion: oaas/standard kind: Agent metadata: name: code-analyzer tier: governed domain: software-development spec: capabilities: - code-analysis - security-scanning - performance-profiling compliance: iso42001: compliant nist-ai-rmf: compliant governance: budgets: maxTokensPerTask: 12000 maxCostPerMonth: 1000 auditLevel: detailed qualityGates: - type: output-validation threshold: 0.85
Governed Capabilities:
- ✅ Audit logging and compliance tracking (ISO 42001, NIST AI RMF)
- ✅ Resource constraints and budgets
- ✅ Quality gates and validation
- ✅ Role-based access control
Perfect for: Production deployments, regulated industries, enterprise teams
Advanced Tier: Orchestration at Scale
The Advanced tier unlocks sophisticated multi-agent orchestration:
apiVersion: oaas/standard kind: Agent metadata: name: code-analyzer tier: advanced domain: software-development spec: capabilities: - code-analysis - security-scanning - performance-profiling orchestration: canLead: true canDelegate: true specializationLevel: expert routing: algorithm: capability-match weights: capabilityMatch: 0.4 specialization: 0.4 availability: 0.2 handoffProtocol: contextCompression: enabled historyDepth: 10 validation: strict
Advanced Capabilities:
- ✅ Dynamic workflow generation
- ✅ Multi-agent coordination
- ✅ Adaptive resource allocation
- ✅ Intelligent agent routing
- ✅ Context-preserving handoffs
Perfect for: Complex workflows, multi-team orchestration, autonomous systems
Capability-Based Routing: The Right Agent for the Right Task
One of OSSA's key innovations is intelligent agent selection. Instead of hardcoding which agent handles which task, OSSA routes dynamically:
class CapabilityRouter: def select_optimal_agent(self, task, available_agents): scores = [] for agent in available_agents: # Match required capabilities capability_match = self.calculate_capability_match( task.required_capabilities, agent.capabilities ) # Evaluate domain specialization specialization_score = self.evaluate_specialization( task.domain, agent.specialization_areas ) # Check current availability availability_score = self.check_availability( agent.current_load, agent.max_capacity ) # Weighted composite score composite_score = ( capability_match * 0.4 + specialization_score * 0.4 + availability_score * 0.2 ) scores.append((agent, composite_score)) return max(scores, key=lambda x: x[1])[0]
Result: 26% improvement in agent utilization compared to static assignment.
Standardized Handoff Protocol: Preserving Context
Context loss during agent handoffs is a killer. OSSA's handoff protocol solves this:
class HandoffProtocol: def prepare_handoff(self, source_agent, target_agent, context): handoff_packet = { 'task_id': context.task_id, 'source': source_agent.id, 'target': target_agent.id, 'context': { 'state': context.current_state, 'history': context.get_relevant_history(), 'constraints': context.constraints }, 'metadata': { 'timestamp': datetime.now(), 'protocol_version': 'ossa-0.2.3' } } # Validate compatibility if not self.validate_compatibility(source_agent, target_agent): raise HandoffException("Incompatible agent protocols") return self.compress_handoff(handoff_packet)
Result: 37% improvement in context preservation (65% → 89%).
Framework Integration: Bring Your Own Agents
OSSA doesn't require rewriting your existing agents. Integration bridges enable seamless adoption:
LangChain Integration
from ossa.bridges import LangChainBridge class LangChainBridge(OSSABridge): def wrap_agent(self, langchain_agent): return OSSAAgent( native_agent=langchain_agent, capabilities=self.extract_capabilities(langchain_agent), adapter=self.create_langchain_adapter() )
CrewAI Integration
from ossa.bridges import CrewAIBridge class CrewAIBridge(OSSABridge): def wrap_crew(self, crew): agents = [] for crew_agent in crew.agents: agents.append(self.wrap_agent(crew_agent)) return OSSAWorkflow(agents=agents)
AutoGen Integration
from ossa.bridges import AutoGenBridge class AutoGenBridge(OSSABridge): def wrap_conversable_agent(self, autogen_agent): return OSSAAgent( native_agent=autogen_agent, capabilities=self.extract_capabilities(autogen_agent), adapter=self.create_autogen_adapter() )
Dynamic Task Decomposition
Advanced tier enables intelligent task breakdown:
class TaskDecomposer: def decompose_task(self, task, available_agents): # Analyze task complexity complexity_analysis = self.analyze_complexity(task) # Identify subtasks subtasks = self.identify_subtasks(task, complexity_analysis) # Map subtasks to optimal agents task_assignments = [] for subtask in subtasks: optimal_agent = self.capability_router.select_optimal_agent( subtask, available_agents ) task_assignments.append({ 'subtask': subtask, 'agent': optimal_agent, 'priority': subtask.priority, 'dependencies': subtask.dependencies }) # Generate execution plan return self.generate_execution_plan(task_assignments)
Adoption Path
Organizations can adopt OSSA incrementally:
Week 1: Core tier
- Register existing agents
- Test basic discovery
- Validate integration
Month 1-2: Governed tier
- Add budget controls
- Enable audit logging
- Implement quality gates
Month 3+: Advanced tier
- Enable dynamic orchestration
- Deploy multi-agent workflows
- Optimize resource allocation
What's Next
In our next post, we'll share production results: 34% reduction in orchestration overhead, 26% improvement in coordination efficiency, and 92% task completion rates.
We'll also walk through a real case study: coordinating agents from three different frameworks (LangChain, CrewAI, AutoGen) to build a complete development pipeline.
Key Takeaways
- Progressive compliance enables incremental adoption (Core → Governed → Advanced)
- Capability-based routing improves agent utilization by 26%
- Standardized handoffs preserve 89% of context (vs. 65% baseline)
- Framework bridges let you use existing agents without rewrites
- Enterprise governance is built-in, not bolted-on
Previous: Why AI Agents Need an Open Standard
Next: Real-World Results: 34% Efficiency Gains with OSSA
Get Started: Installation Guide