Skip to main content
Technical

Introducing the OSSA Framework: 3-Tier Progressive Compliance

Thomas Scola
November 18, 2024

Introducing the OSSA Framework: 3-Tier Progressive Compliance

In our previous post, we explored why AI agents need a vendor-neutral standard. Today, we're unveiling the OSSA framework architecture and its game-changing approach to adoption.

The Challenge of Enterprise Adoption

Every new standard faces a chicken-and-egg problem:

  • Too simple? Enterprises won't trust it for production
  • Too complex? Teams won't adopt it

OSSA solves this with progressive compliance: start simple, add governance when ready, unlock advanced features when needed.

The 3-Tier Model

Core Tier: Get Started Fast

The Core tier provides basic agent discovery and invocation—everything you need to prove value quickly:

apiVersion: oaas/standard kind: Agent metadata: name: code-analyzer tier: core spec: capabilities: - code-analysis - security-scanning endpoints: - url: https://api.example.com/analyze protocol: rest

Core Capabilities:

  • ✅ Agent registration and discovery
  • ✅ Basic capability declaration
  • ✅ Simple request-response patterns

Perfect for: Proof of concepts, small teams, initial experiments

Governed Tier: Enterprise Ready

When you're ready for production, the Governed tier adds enterprise controls:

apiVersion: oaas/standard kind: Agent metadata: name: code-analyzer tier: governed domain: software-development spec: capabilities: - code-analysis - security-scanning - performance-profiling compliance: iso42001: compliant nist-ai-rmf: compliant governance: budgets: maxTokensPerTask: 12000 maxCostPerMonth: 1000 auditLevel: detailed qualityGates: - type: output-validation threshold: 0.85

Governed Capabilities:

  • ✅ Audit logging and compliance tracking (ISO 42001, NIST AI RMF)
  • ✅ Resource constraints and budgets
  • ✅ Quality gates and validation
  • ✅ Role-based access control

Perfect for: Production deployments, regulated industries, enterprise teams

Advanced Tier: Orchestration at Scale

The Advanced tier unlocks sophisticated multi-agent orchestration:

apiVersion: oaas/standard kind: Agent metadata: name: code-analyzer tier: advanced domain: software-development spec: capabilities: - code-analysis - security-scanning - performance-profiling orchestration: canLead: true canDelegate: true specializationLevel: expert routing: algorithm: capability-match weights: capabilityMatch: 0.4 specialization: 0.4 availability: 0.2 handoffProtocol: contextCompression: enabled historyDepth: 10 validation: strict

Advanced Capabilities:

  • ✅ Dynamic workflow generation
  • ✅ Multi-agent coordination
  • ✅ Adaptive resource allocation
  • ✅ Intelligent agent routing
  • ✅ Context-preserving handoffs

Perfect for: Complex workflows, multi-team orchestration, autonomous systems

Capability-Based Routing: The Right Agent for the Right Task

One of OSSA's key innovations is intelligent agent selection. Instead of hardcoding which agent handles which task, OSSA routes dynamically:

class CapabilityRouter: def select_optimal_agent(self, task, available_agents): scores = [] for agent in available_agents: # Match required capabilities capability_match = self.calculate_capability_match( task.required_capabilities, agent.capabilities ) # Evaluate domain specialization specialization_score = self.evaluate_specialization( task.domain, agent.specialization_areas ) # Check current availability availability_score = self.check_availability( agent.current_load, agent.max_capacity ) # Weighted composite score composite_score = ( capability_match * 0.4 + specialization_score * 0.4 + availability_score * 0.2 ) scores.append((agent, composite_score)) return max(scores, key=lambda x: x[1])[0]

Result: 26% improvement in agent utilization compared to static assignment.

Standardized Handoff Protocol: Preserving Context

Context loss during agent handoffs is a killer. OSSA's handoff protocol solves this:

class HandoffProtocol: def prepare_handoff(self, source_agent, target_agent, context): handoff_packet = { 'task_id': context.task_id, 'source': source_agent.id, 'target': target_agent.id, 'context': { 'state': context.current_state, 'history': context.get_relevant_history(), 'constraints': context.constraints }, 'metadata': { 'timestamp': datetime.now(), 'protocol_version': 'ossa-0.2.3' } } # Validate compatibility if not self.validate_compatibility(source_agent, target_agent): raise HandoffException("Incompatible agent protocols") return self.compress_handoff(handoff_packet)

Result: 37% improvement in context preservation (65% → 89%).

Framework Integration: Bring Your Own Agents

OSSA doesn't require rewriting your existing agents. Integration bridges enable seamless adoption:

LangChain Integration

from ossa.bridges import LangChainBridge class LangChainBridge(OSSABridge): def wrap_agent(self, langchain_agent): return OSSAAgent( native_agent=langchain_agent, capabilities=self.extract_capabilities(langchain_agent), adapter=self.create_langchain_adapter() )

CrewAI Integration

from ossa.bridges import CrewAIBridge class CrewAIBridge(OSSABridge): def wrap_crew(self, crew): agents = [] for crew_agent in crew.agents: agents.append(self.wrap_agent(crew_agent)) return OSSAWorkflow(agents=agents)

AutoGen Integration

from ossa.bridges import AutoGenBridge class AutoGenBridge(OSSABridge): def wrap_conversable_agent(self, autogen_agent): return OSSAAgent( native_agent=autogen_agent, capabilities=self.extract_capabilities(autogen_agent), adapter=self.create_autogen_adapter() )

Dynamic Task Decomposition

Advanced tier enables intelligent task breakdown:

class TaskDecomposer: def decompose_task(self, task, available_agents): # Analyze task complexity complexity_analysis = self.analyze_complexity(task) # Identify subtasks subtasks = self.identify_subtasks(task, complexity_analysis) # Map subtasks to optimal agents task_assignments = [] for subtask in subtasks: optimal_agent = self.capability_router.select_optimal_agent( subtask, available_agents ) task_assignments.append({ 'subtask': subtask, 'agent': optimal_agent, 'priority': subtask.priority, 'dependencies': subtask.dependencies }) # Generate execution plan return self.generate_execution_plan(task_assignments)

Adoption Path

Organizations can adopt OSSA incrementally:

Week 1: Core tier

  • Register existing agents
  • Test basic discovery
  • Validate integration

Month 1-2: Governed tier

  • Add budget controls
  • Enable audit logging
  • Implement quality gates

Month 3+: Advanced tier

  • Enable dynamic orchestration
  • Deploy multi-agent workflows
  • Optimize resource allocation

What's Next

In our next post, we'll share production results: 34% reduction in orchestration overhead, 26% improvement in coordination efficiency, and 92% task completion rates.

We'll also walk through a real case study: coordinating agents from three different frameworks (LangChain, CrewAI, AutoGen) to build a complete development pipeline.

Key Takeaways

  • Progressive compliance enables incremental adoption (Core → Governed → Advanced)
  • Capability-based routing improves agent utilization by 26%
  • Standardized handoffs preserve 89% of context (vs. 65% baseline)
  • Framework bridges let you use existing agents without rewrites
  • Enterprise governance is built-in, not bolted-on

Previous: Why AI Agents Need an Open Standard

Next: Real-World Results: 34% Efficiency Gains with OSSA

Get Started: Installation Guide

Tags

ossaarchitectureframeworkcompliance